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Abstract

Surface electromyography (sEMG) control methods of bionic mechanic hand became a medical and

economic issue which made possible to conduct large research in acquisition tools and signal processing.

There are sEMG classification methods providing good classification accuracy but the problem of robustness

in cross-subject condition remains. Recently a new framework based on the Riemannian geometry has

showed promising results in brain computer interfaces (EEG signals). This paper introduces the first use of

this framework for sEMG data with naïve electrodes positioning. In one subject condition, the classification

accuracy is >97%. In cross-subject condition the accuracy is about 69%. The Riemannian method always

exceeds the standard discriminant analysis approach. These results show that the framework fit well with

EMG data and is a good candidate for muscle machine interfaces.
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I. Introduction

The surface EMG provides measures of the

muscles electric activity via electrodes placed

on the skin. When electrodes are on the arm

muscles one can measure the activity of the

muscles during different hand movements. Us-

ing this information enables the classification

of the EMG signals which in term can be used

to drive a fully integrated prosthetic hand, giv-

ing to patients the possibility to recover some

of their capacities after the loss of a hand. An-

other application of this ongoing research is

machine control in the broad sense. Indeed,

different ways are are followed for controlling

machine by motion: video acquisition as we
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can see in the case leap motion or kinect (We-

ichert et al., 2013) or EMG. Leap motion is

accurate but it needs an external device and

has a space constraint.

Several methods are currently used to per-

form the classification of sEMG signals. Lin-

ear discriminant analysis (LDA) and support

vector machines (SVM) are the most popular.

Alkan and al. (2012) show that SVM, associ-

ated to discriminant analysis, can perform a

classification for four hand movements with

very good average accuracy rate(99%) and er-

ror rate 1%. Mayer et al. (2008) achieved to

classify 8 class (motions) with >98% accuracy

on offline data and >94% on on line data (10

electrodes). They also show that the classi-

fication rate decreases as the number of class

increases or decreases the number of electrodes.

A mixed LDA and Principal component analy-

sis (PCA) succeeded to classify five hand mo-

tions (hand closing, hand opening, index finger

pinching, middle finger pinching and hand re-

laxing) with an accuracy of 98.8 (Zhang et al.,

2012).

In recent year, researchers have been investi-

gating a new classification framework for Brain

Computer Interface (BCI) based on the Rieman-

nian geometry in the manifold of covariance

matrices. This method allows a high classifica-

tion accuracy in several BCI paradigms such as

Motor Imagery or P300 (Congedo, 2013). This

approach involves a simple classification algo-

rithm with little pre-processing, it is resistant

to noise and cross-subjects variability. This is

why we thought that Riemannian framework

classification should be investigated on sEMG

signals. The covariance matrix of sEMG signal

epochs belongs to the manifold a of symmetric

positive-definite (SPD) matrices and contains

all the spatial information. Riemannian geome-

try provides as with an appropriate framework

to manipulate SPD matrices. The aim of this ar-

ticle is to investigate this method with surface

electromyographic data.

II. Methods

I. Subjects

The sEMG data were collected from six able-

bodied participants (three males and three fe-

males, 22 to 26 years old, age mean 23.5, stan-

dard deviation 1.37). Before the experiment,

they were informed about the protocol: the

position of the body and the motions to do.

II. Experimental protocol

Data acquisition was performed via Biopac

MP150 (BIOPAC Systems, Inc, USA). 10 Ag-

AgCl electrodes were used with 2000 Hz sam-

pling frequency. The participants were in-
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structed to perform 12 classes of motions

(thumb flexion, thumb extension, index flex-

ion, index extension, opening hand, closing

hand, hand extension, hand flexion, pronation,

supination, grasp with index thumb, rest). For

each class 20 trials were recorded. The experi-

ment lasted 20 minutes and the acquisition was

continuous. Participants were told to stand up

and point the right arm, on which are placed

the electrodes, to the ground. In this way elec-

trodes were not disturbed by the contact with

a support.

III. Electrode placement

We don’t perform an optimization of the place-

ment of the electrodes. For this study 10 elec-

trodes were placed (6 proximal and 4 distal)

so that anyone with no specialized knowledge

of the arm anatomy could place them in the

same way: measure the size of the arm, sepa-

rate into 3 tiers, 4 electrodes placed around the

arm to the limit of the first third of the starting

poignant then do the same with 6 electrodes on

the second third, avoiding placing electrodes

on a radius or ulna (figure 1 and 2).

Figure 1: Position electrodes with palm down.
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Figure 2: Position electrodes with palm up.

IV. Data segmentation

The problem of the segmentation (detection of

the onset and offset of a trial) of sEMG signal is

part of ongoing research (Kaur et al., 2009). To

resolve this issue we chose to establish an ex-

perimental protocol to guide the subjects with

a visual feedback displayed on a screen. The

application shows to the subject the motion

to be performed, the duration of the motion

and the duration of the rest period. Every trial

lasted 3s and after each one subject can rest for

2s (figure 3).

Figure 3: Pulsar interface : application to guide the sub-

jects. The first progress bar indicates the mo-

tion duration. The second indicates rest dura-

tion. In the middle, a picture presents motion

to produce.

In parallel to the acquisition of the 10 sEMG

channels, two channels were added as trigger.

The application sent a signal to one of these

channels at the beginning and at the end of

each trial. Another signal was sent to the sec-

ond channel flagging a class change. The seg-

mentation is then based on these two added

channels.

V. Preprocessing

The most informative frequencies of sEMG sig-

nal are contained in the range of 20-700 Hz

(Chen et al., 2011). Such pass band filter was

applied to this range as well as a nochfilter

at 50 Hz. These are the only preprocessing

applied here.
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VI. Classification method

In this section we describe the Riemaniann

framework used to perform classification based

on the covariance matrix of the signal. Note

that this framework is not devoted to sEMG

signal and can be applied to other data as well.

Given a trial data matrix X comprising N

channels (in raws) and T samples (in columns),

the covariance matrix is estimated by :

C =
1

N − 1
XXT . (1)

The result is a SPD square matrix of dimen-

sion N*N where N is the number of channels.

The matrix contains in diagonal elements the

information about the energy of the signal and

in non-diagonal elements the spatial informa-

tion, i.e., the covariance between all electrodes

taking pair-wise.

Given a number of training trials X for each

class z ∈ 1..Z corresponding to a hand mo-

tion, we estimate for each one its covariance

matrix. The Riemannian framework provides

a way to define an appropriate distance mea-

sure and geometric mean between covariances

matrices respecting the particular structure of

them (BARBARESCO, 2009). In this way, the

computation of means and distances are more

accurate and robust as compared to equivalent

measures in the Euclidian space.

One of the differences between working in

a Riemannian and Euclidian space is that the

operations in Riemannian manifold are always

local and are made with respect to a reference

point (Congedo, 2013). Distance between two

SPD matrices P1 and P2 with dimension N ∗N

is given by :

δ(P1, P2) = [
N

∑
n=1

log2(λn)]
1/2, (2)

where λn are the eigenvalues of P1−1P1 and

log2 denotes the square of the log of the argu-

ment. Note that the dimensions of covariances

matrices is the number of channels of the signal.

In term of geometry, if we consider the covari-

ance matrices as points in a curved space, this

distance is the length of the shortest geodesic

linking them.

With the definition of Riemannian distance

we can compute the Riemannian geometric

mean between M SPD matrices P1, P2, ..., PM

as the SPD matrix G satisfies the following :

argmin
G

M

∑
m=1

δ2(P, Pm) (3)

There is no closed-form solution to compute

the geometric mean but an iterative algorithm

can find the unique minimum :
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Algorithm 1 Geometric mean of M SPD matri-

ces
Entry : Geomtric mean G of M SPD matrices

G = P1, P2, ..., PM and t>0

1) Initialize G with the arithmetic mean :

1
M ∑M

m=1 Gm

2)

repeat

G = G1/2exp[ 1
M ∑M

m=1 ln(G−1/2PmG−1/2)]G1/2

until convergence

||∑M
m=1 ln(G−1/2PmG−1/2)|| < t, where

||∑M
m=1 ln(G−1/2PmG−1/2)|| is the Frobenius

norm of the argument.

The principle of Riemannian framework

have been summarized such as :

X is a set of trials in classes z = 1...Z (train-

ing data). After preprocessing, calculate for

each trial an estimation of the covariance ma-

trix with which we can estimate for each class

the Riemannian mean of these matrices. For

new unlabeled trial, calculate its covariance ma-

trix and then its Riemannian distance to the Rie-

mannian mean of covariance matrices of each

labeled class. Label the new trial with class

with the smallest distance. This simple clas-

sification method is called MDM (Minimum

distance classifier) (Congedo, 2013). In this

way, spatial information can be used to per-

form a classification. The matrices contains

also the amplitude informations of the signal

but because the amplitude of EMG signal is

stochastic, this information is not useful in

state. Barachant and al. (2013) showed that it is

possible to include frequency information. Our

motivation is knowing if including frequency

information could increase the classification

rate of MDM (see theory part and results) for

offline sEMG data.

VII. Frequency information

There is way to include frequency information

in the MDM classification by applying pass-

band filters to the signal. We use the method

that have already been applied to the detection

of P300 (Barachant et al., 2013) : Y pass-band

filters are applied to all the X labelled trials in

frequency ranges we know that contain infor-

mation. That produces Y*X new trials to which

is computed the covariance matrix. For new

unlabelled trial we apply the same filters. After

that we sum the Riemannian distances between

the Y covariances matrices of the filtered new

trial and the Y*Z means of the labelled trials.

The minimum sum gives the label where to

put the new trial.

The general method is summarize by algo-

rithm 2.
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Algorithm 2 MDM frequency algorithm
Training : trials Xz with Yz labels

Test : unlabeled trial X

1) Prepossessing the trial signals

2) Apply the pass-band filters to Xz with fre-

quencies F
′
1 to F

′
1, F

′′
1 to F

′′
2 , F

′′′
1 to F

′′′
2 ,...

3) For each class Compute the covariances ma-

trices.

4) For each unlabeled filtered trial (C’, C”,

C”,...) compute the covariances matrices.

5) For each class compute the covariance means

(Cz’, Cz”, Cz”,...).

6) Compute the distances (Dz’, Dz”,Dz”e,...)

between the covariances matrices C’, C”, C”,...

and Riemannian means Cz’, Cz”, Cz”,... re-

spectively, and sum the distances (Dz).

7) Return the class z with minimum distance

Dz.

III. Results

We will present the results of three different

algorithms : a standard discriminant analy-

sis (LDA), the standart MDM and the MDM

with frequential information (MDMfreq). The

model validation technique we used is k-fold

cross-validation. As a first step, we applied

a classification for each participant. Then, we

mixed the data from all subjects and did the

same validation technique.

The figure 4 shows the average spectrogram

of one electrode during hand closing for one

subject. As we can see, the spectrum changes as

function of frequency and time. The amplitude

is maximum for low frequencies (areas where

the red color is more intense). We applied

different frequency ranges with an exhaustive

search to optimize the classification accuracy

for each participant. That suggests frequency

information in MDM could increase the clas-

sification accuracy. Given this, we found five

frequency ranges that optimize our algorithm :

25 to 48, 52 to 153, 161 to 229, 266 to 451 and

502 to 720 Hz.

Figure 4: Spectrogram mean for hand closing motion for

one subject and 2 electrodes. When we do the

same for different hand motion, we see differ-

ences in the spectrograms. That is clue that

sEMG contains frequency information.

We have visualized the covariances matri-

ces positions obtained with two electrodes only

on subject 6 (figure 5). We can see that the dis-
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tribution in the Rimannian space are correlated

with labeled data suggesting that the classes

are separable from each other.

Figure 5: Distribution of covariances matrices given two

electrodes C1 and C3 in the manifold. Each

color corresponds to a class.

The k-fold cross-validation technique sepa-

rates the data into k equal in size sub-samples.

Then, one sub-sample is retained as a vali-

dation data and k-1 are retained as training

data. In our cross-validation the operation is

repeated until all the k sub-samples have been

tested as validation data. Then, we compute

the confusion matrix with actual and predicted

classes and then we compute the classification

accuracy.

Figure 6 presents the classification accu-

racy results of the three algorithms, averaging

the results across twenty cross-validation. Per-

formance varies from one subject to another

but remains high for all the classification algo-

rithms (>90% except for participants three and

four in LDA) and the standard deviations are

very low (<0.3) for all participants and meth-

ods. Standard LDA shows good classification

accuracy with a maximum of 97% for partici-

pant three and a mean of 91.91%. The worst

result observed is 86,44 % in one session. Stan-

dard MDM presents a classification accuracy

higher than LDA for five of the six subjects. In

comparison to the worst results of LDA, MDM

classifies the data with almost 10% better re-

sults. With mean accuracy of at 95,97% MDM

makes a better classification.

MDMfreq classification accuracy is better

than LDA for 5 subject and always as compare

to MDM. That confirms our assumption that

frequency information could be used in MDM

to classify sEMG data. With a mean accuracy of

97,16% MDMfreq method improves the MDM

method. Participant three have the best results

with 99.77% of classification rate.
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Figure 6: Evaluation of the classification accuracy of the

three algorithms for the six subjects separately.

I. Cross-subejct results

The difficulty in classifying sEMG signal in

cross-subject condition is well known. This is

ussualy due to the anatomy of the arm and

inter variability (arm weight and morphology),

cross-talk phenomenon (an electrode can be

influenced by the electric activity of a nearby

muscle that is not the target muscle), and skin

specificity (hair, dead skin, thickness). To re-

solve these problems, researchers work on the

improvement of machine learning and data ac-

quisition (types of electrodes, amplifiers, elec-

trode placement,etc). Our present investigation

focus on a machine learning method with naive

assumption about electrodes positioning. The

figure 7 shows the results of classification in

cross-subject condition (data from all partici-

pants are mixed and cross-validated). The clas-

sification accuracy deteriorates by (which is to

be expected) 36% for LDA, 30% for MDM and

27% for MDMfreq. MDMfreq is 14.75% bet-

ter than LDA and 4.55% than standard MDM.

MDMfreq is better significantly better than

MDM (p-value<0.001).

Figure 7: Evaluation of the classification accuracy of the

three algorithms for the data from all the sub-

jects (cross-subject).

When we look in detail the recall and preci-

sion of each class (figure 8), we see that the ac-

curacy of MDMfreq is not homogeneous across

class. The classes with hand motion (opening

the hand, hand flexion and extension, rest) are

better recalled except for closing the hand. The

worst class recognition is flexion of index. Fin-

ger motions are the most difficult to detect in

a robotic prosthesis arm. One can also see that

the class rest is very high in recall and preci-

sion. This a good thing for the future online

application because the algorithm will be able
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to detect no motion activity.

Figure 8: Evaluation of recall and precision for each mo-

tions classified by MDMfreq.

IV. Discussion

In this paper, we introduce the first attempt to

apply Riemannian geometry to classify sEMG

signals. The MDM algorithm doesn’t require

any parameter setting whereas MDMfreq only

requires frequency ranges. Riemannian geo-

metric framework is intuitive and simple to

adapt with EMG signals. As well-known SVM

classifiers are not the best choice for multi-

class problems, in contrast MDM algorithms

works on cases with multiple classes in a na-

tive way. These improvement can be useful to

apply them, for example, the field of robotics,

in this context efficiently classify EMG signals

is needed for controlling robotics arms.

The high classification accuracy reported

here shows that the Riemannian distance be-

tween covariance matrices provides relevant

information to classify, hand and finger mo-

tion. An important improvement is obtained

when MDM is modified to include frequency

information. This shows its adaptation capac-

ity.

However a performance lost is observed

when information coming from different par-

ticipants is used. This may be explained by the

fact that there is some inter-variability caused

by the anatomical differences between partic-

ipants. It is also difficult to reproduce in the

same way the electrodes placement across ses-

sions. Concerning arm electrodes placement,

there is no consensus as it exist for other part

of the body (refer for example to SENIAM ini-

tiative which is a standards for surface elec-

tromyograph). The best method to increase the

results is the localization of muscles, but this

requires anatomy knowledge. The second step

of this study is to investigate the classification

accuracy with such methodology. Another ex-

planation of lower performance is the difficulty

to concentrate and repeat motions exactly in

the same way.
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